Hydrogen-Bond-Driven Electrophilic Activation for Selectivity Control: Scope and Limitations of Fluorous Alcohol-Promoted Selective Formation of 1,2-Disubstituted Benzimidazoles and Mechanistic Insight for Rationale of Selectivity

Rajesh Chebolu, Damodara N. Kommi, Dinesh Kumar, Narendra Bollineni, and Asit K. Chakraborti*

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. [Nag](#page-8-0)ar 160 062, Punjab, India

S Supporting Information

[AB](#page-8-0)STRACT: [Hydrogen-bon](#page-8-0)d-driven electrophilic activation for selectivity control during competitive formation of 1,2 disubstituted and 2-substituted benzimidazoles from o-phenylenediamine and aldehydes is reported. The fluorous alcohols trifluoroethanol and hexafluoro-2-propanol efficiently promote the cyclocondensation of o-phenylenediamine with aldehydes to afford selectively the 1,2-disubstituted benzimidazoles at rt in short times. A mechanistic insight is invoked by NMR, mass

spectrometry, and chemical studies to rationalize the selectivity. The ability of the fluorous alcohols in promoting the reaction and controlling the selectivity can be envisaged from their better hydrogen bond donor (HBD) abilities compared to that of the other organic solvents as well as of water. Due to the better HBD values, the fluorous alcohols efficiently promote the initial bisimine formation by electrophilic activation of the aldehyde carbonyl. Subsequently the hydrogen-bond-mediated activation of the in situ-formed bisimine triggers the rearrangement via 1,3-hydride shift to form the 1,2-disubstituted benzimidazoles.

ENTRODUCTION

The broad range of biological activities of compounds with the 1,2-disubstituted benzimidazole moiety¹ make them highly sought as synthetic targets. This has generated interest to develop synthetic methods that foll[ow](#page-8-0) diverse strategies (Scheme 1). The reported procedures for the construction of the 1,2-disubstituted benzimidazole scaffold may be classified under thr[ee](#page-1-0) broad categories: oxidative cyclocondensation, C-1 or N-2 alkylation/arylation of the preformed N-2 substituted or C-1 substituted benzimidazole, respectively, and transition metal-catalyzed inter/intramolecular N-arylation. The cyclocondensation involves the treatment of (i) N-alkyl-N-acyl-ophenylenediamine (route A),^{1g,2} or (ii) N-alkyl-*o-*phenylenediamine with aldehyde^{1g,3} (route B). The C-1 or N-2 alkylation/ arylation procedures involve [\(i\)](#page-8-0) N-alkylation of 2-substituted benzimidazole, 1b,d,i [\(rou](#page-8-0)te C) or (ii) Suzuki coupling of aryl boronic acids with 1-iodo-2-alkylbenzimidazoles⁴ (route D). The transitio[n m](#page-8-0)etal-catalyzed N-arylation routes are (i) copper-catalyzed amidation of o-halo N-alkyl[at](#page-8-0)ed anilines followed by cyclodehydration of the N-alkyl-N-acyl o-phenylenediamine⁵ intermediate (route E), (ii) copper/palladiumcatalyzed amination of o-halo N-acylated anilines followed by cyclodehyd[ra](#page-8-0)tion of the N-alkyl-N-acyl o -phenylenediamine⁶ intermediate (route F), and (iii) palladium-catalyzed intramolecular aryl-amination of (o -bromo/iodophenyl)amidines^{[7](#page-8-0)} or bis(trifluoroacetoxy)iodobenzene-mediated intramolecular cyclization of N-alkyl-N'-arylamidin[es](#page-8-0)⁸ (route G). These routes require metal catalysts and special efforts to prepare the desired

starting materials. Thus, a direct one-pot cyclocondensation of o-phenylenediamine with aldehydes (route H) appears to be a straightforward approach.

The selectivity control⁹ often becomes the synthetic bottleneck and is an important conceptual advancement in organic synthesis. Such a si[tu](#page-8-0)ation has high potential to occur during the direct cyclocondensation of o-phenylenediamines with aldehydes, as it poses a selectivity problem due to competitive formation of the 1,2-disubstituted and the 2 substituted benzimidazoles (Scheme 2).

Although the condensation of o-phenylenediamine with aldehydes (route H) is performe[d](#page-1-0) under varied catalytic assistance 10 to construct the benzimidazole scaffold, the critical issue of selectivity control due to the competitive formation of 1,2-disub[stit](#page-8-0)uted and 2-substituted benzimidazoles is inadequately addressed. We describe herein an efficient metal/ Lewis acid-free protocol for selective formation of the 1,2 disubstituted benzimidazoles.

■ RESULTS AND DISCUSSION

We realized that the best examples of selectivity control are demonstrated by Nature's way to synthesize organic molecules. Anticipating that the strong Lewis/Brönstead acid catalysts used for electrophilic activation of the aldehyde carbonyl might cause a lack of selectivity, we opted for Nature's synthetic tools

Received: August 24, 2012 Published: October 16, 2012

Scheme 2. The Issue of Selectivity in the Formation of the 1,2-Disubstituted and 2-Substituted Benzimidazoles during the Condensation of o-Phenylenediamine with Aldehydes

$$
R + \frac{N}{N+2} + \frac{N}{2} + \frac{N}{2} + \frac{N}{N} + \frac{N}{N} + \frac{N}{N} + \frac{N}{N}
$$

of noncovalent interactions. Noncovalent synthesis is Nature's strategy to construct molecular architecture with a high precision of selectivity that is required for various biological functions and is the central theme of drug−receptor interaction. 11 The hydrogen bond (H-B) is the backbone of noncovalent synthesis¹² and is a frequently adopted synthetic tool by or[gan](#page-9-0)ic chemists.¹³ Therefore, we resorted to a milder hydrogen-bond-driven 14 electrophilic activation strategy.

In a model study, o-ph[en](#page-9-0)ylenediamine (1a) was treated with benzaldehyde (2a) in [di](#page-9-0)fferent solvents with varying hydrogen bond donor (HBD) ability in the absence of metal/Lewis acid catalyst (Table 1).

Poor conversion with competitive formation of 3a and 4a took place un[der](#page-2-0) neat conditions and in solvents with poor HBD (α) values¹⁵ (entries 2-11, Table 1). Moderate results (total yields of 3a and 4a) were obtained in water and other protic polar solv[en](#page-9-0)ts [such as alcohols an[d](#page-2-0) polyhydric alcohols $\left[\text{glycerol}\right]$,¹⁶ PEGs)] (entries 12−19, Table 1) with competitive formation of 4a. Delightfully, we observed complete selectivity toward [3a](#page-9-0) in excellent yields in trifluoro[et](#page-2-0)hanol (TFE) and hexafluoro-2-propanol (HFIP), as these have the highest α values, 1.51 and 1.96, respectively.¹⁵

The effect of various reaction parameters (temperature, time, molar equivalents of 1a and 2a, [and](#page-9-0) amounts of TFE/HFIP) were assessed (Table 2). A decrease in selectivity was observed by lowering the reaction temperature to 0 °C to −40 °C with competitive formatio[n o](#page-3-0)f 4a. The use of equimolar amounts of 1a and 2a also afforded 3a as the major product and indicated the ability of TFE/HFIP to drive the selectivity toward 3a although there is a general trend for competitive formation of 4a at lower temperature. Most significantly, the TFE/HFIP is not required in large quantities and only 3 molar equiv (with

respect to 1a) is sufficient. The best operational condition is the treatment of 1a with 2a (2 equiv) in the presence of TFE/ HFIP (3 equiv) at rt. However, the reactions are completed in shorter time (10 and 5 min, in 3 molar equiv of TFE and HFIP, respectively) at ∼80 °C with complete selectivity in favor of 3a.

The superiority of TFE/HFIP was clearly established both in terms of the product yields as well as the selectivity by comparing the results obtained for the reaction of 1a with 2a with those obtained using a few reported catalysts (Table 3).

The general applicability of selective 1,2-disubstituted benzimidazole formation is demonstrated by the reactio[n](#page-4-0) of 1a with various aldehydes (Table 4). Although the HFIPpromoted reactions take shorter time, TFE was chosen due to its ease of availability and low co[st.](#page-5-0) Excellent results were obtained in short times (20−60 min) at rt. The reaction condition is compatible with various sensitive functional groups (entries 13−16). For substrates with an ortho substituent (entry 4) or bearing a strong electron-withdrawing group (entry 11), lack of selectivity was observed and the 2 substituted benzimidazole was the major product but the selectivity is directed toward 1,2-disubstituted benzimidazole at higher temperatures (∼80 °C).

To rationalize the role of TFE/HFIP on selectivity control, we set forth to understand the mechanistic course of the reaction. Two distinctly different pathways have been proposed (Scheme 3): (i) bisimine-rearrangement (path a)10a,d,e,g,l,m,o,q,r and (ii) monoimine-cyclocondensation−aminal/immoniumrearrange[m](#page-5-0)ent $(\text{path } b)$,^{100,17} reflecting incon[sistent](#page-8-0) [views](#page-9-0) without any distinct experimental evidence.

The TFE-promoted re[action](#page-9-0) of 1a with PhCDO (2 equiv) afforded 2-phenyl-1- α - d_2 -methylphenyl-1H-benzimidazole (5) (Figure 1). Although this observation justifies the proposal of a 1,3-hydride shift (Scheme 3), it remains inconclusive whether the rear[ra](#page-6-0)ngement takes place via intermediate $III^{100,q}$ (path a) or V/VI (path b).

Path $b^{10l,17}$ seems unlike[ly](#page-5-0), as no ion peak cor[respo](#page-9-0)nding to aminal V (condensation of IV with the aldehyde) or immonium ion VI [was](#page-9-0) detected (LCMS) during the progress of the reaction of 1a with 2a (2 equiv). The formation of 3a via 4a is also ruled out, as no detectable amount of 3a was formed by Table 1. Selectivity of Formation of 3a and 4a during the Reaction of 1a with 2a under Metal/Catalyst-Free Conditions^a

 a 1a (0.10 g, 1 mmol) was treated with 2a (0.21 g, 2 mmol, 2 equiv) in various solvents (1 mL) at rt for 1 h. b Isolated yields of 3a and 4a after purification.

treatment of the preformed 4a with 2a or benzyl alcohol in the presence of TFE or HFIP. Further exclusive formation of 3a observed in comparable yields during the TFE-promoted reaction of 1a with 2a (2 equiv) under ambient temperature and nitrogen atmospheres also indicates that the 1,2 disubstituted benzimidazole formation does not proceed through imidazoline intermediate IV.^{17b} Hence, we planned for various spectrometric studies to detect the intermediates involved during the progress of the re[act](#page-9-0)ion.

Mass spectrometric (+p ESI-MS) studies were performed during the TFE (3 mmol)-promoted reaction of 1a (1 mmol) with 2a (2 mmol) at rt. A sample aliquot from the reaction after 5 and 15 min exhibited ion peaks at m/z 285, which could be due to the bisimine or $3a$. The tandem mass (ms^2) of the ion with m/z 285 gave daughter ions at m/z 207 and 91 that are also obtained from the $ms²$ of the authentic sample of $3a$. Thus, the mass study remains inconclusive with respect to the intermediacy of the bisimine (path a).

Next we performed time-dependent ¹H NMR experiments during the progress of the TFE-promoted reaction of 1a (1 mmol) with 2a (2 mmol) at rt for a sample aliquot withdrawn after 5, 15, and 30 min. A singlet at δ 8.55 was observed in the samples at 5 and 15 min reaction time with decreasing intensity and disappeared in the sample at 30 min reaction (Figure 2). To find out whether this was due to the monoimine or bisimine, the reaction of 1a (1 mmol) with 2a (2 mmol) in [th](#page-6-0)e presence of TFE (3 mmol) at rt was treated with NaBH₄ (3 mmol) equiv) after 5 min and stirred at rt for 1 h (Scheme 4). The LCMS of the crude reaction mixture exhibited ion peaks at m/z 285 and 289 which correspond to the ion peak of 3a and the reduced product of the bisimine (bisreductive diamination of 2a with 1a), respectively. After purification (flash chromatography), N,N′-dibenzyl-1,2-phenylenediamine (6) was obtained (spectral data) and provided, for the first time, crucial evidence that the reaction proceeds via path a.

In the ${}^{1}\mathrm{H}$ NMR spectrum, sample aliquots withdrawn after 5, 15, and 30 min of the reaction of 1a (1 mmol) with 2a (2 mmol) in MeOH (1 mL) at rt exhibited two singlets at δ 8.54 and 8.45 (Figure 2) corresponding to the bis- and monoimines, respectively. This justified the lack of selectivity observed in MeOH.

Therefore, the [s](#page-6-0)electivity control for the formation of 1,2 disubstituted benzimidazole resides on the feasilibility of the formation of the bisimine under the prescribed set of experimental condition(s). The better HBD values of TFE and HFIP¹⁵ enable them to act as effective electrophilic activating agents for bisimine formation and for promoting the subsequen[t](#page-9-0) mechanistic events (intramolecular nucleophilic attack followed by a 1,3-hydride shift) toward the selective formation of the 1,2-disubstituted imidazoles. The better HBD value of HFIP compared to that of TFE makes HFIP a better promoter as reflected by the shorter reaction time.

The formation of bisimine II is crucial and the determining factor for 1,2-disubstituted benzimidazole formation (hence directing/controlling the 1,2-disubstituted vs 2-substituted benzimidazole selectivity) as demonstrated by the reaction of 1a with 2-methoxybenzaldehyde (2 equiv) that resulted in the formation of the 2-substituted benzimidazole as the major

Table 2. Effect of Various Reaction Parameters on the Selectivity of Formation of 3a and 4a during the Condensation of 1a and $2a^a$

 a **1a** (0.107 g, 1 mmol) was treated with **2a** (with varying molar equiv with respect to 1a) in TFE/HFIP (except for entries 28 and 29) under various conditions. $\frac{b}{c}$ Molar equivalent of 2a used with respect to 1a. Isolated yields of 3a and 4a after purification.

product at rt (Table 4, entry 4, footnotes d and e). To demonstrate that in this case the bisimine formation does not occur, the reaction [mix](#page-5-0)ture of 2-methoxybenzaldehyde (2 mmol), 1a (1 mmol), and TFE (3 mmol) at rt was treated with NaBH₄. The formation of N^1 -(2-methoxybenzyl)benzene-1,2diamine (7) (Scheme 4) proved that the lack of formation of the expected 1,2-disubstituted benzimidazole is due to the feasibilty of only mon[oi](#page-6-0)mine formation. Similar implication of the steric factor in suppressing the bisimine formation (and hence directing the selectivity toward the 2-substituted benzimidazole) was also observed with pivaldehyde (sterically hindered aliphatic aldehyde) that gave the 2-substituted benzimidazole in 92% yield during the reaction with 1a in the presence of TFE (3 equiv) at rt for 1 h (Table 4, entry 28).

In the case of electron-deficient aldehyde (Table 4, entry 11, footnote g) due to the highly electrophilic char[ac](#page-5-0)ter of the aldehyde carbonyl, a rapid formation of the mono[im](#page-5-0)ine takes place, and before the second amino group of 1a is involved in

bisimine formation with another molecule of 4-nitrobenzaldehyde, it undergoes intramolecular nucleophilic attack on the $C=N$ of the monoimine, leading to the formation of the imidazoline intermediate and finally to the 2-substituted benzimidazole. However, selective formation of the 1,2 disubstituted benzimidazole took place under heating, as this assisted the bisimine formation. Thus, it was anticipated that an increase in nucleophilicity of the amino group would induce the formation of the bisimine with 4-nitrobenzaldehyde and hence the corresponding 1,2-disubstituted benzimidazole. The formation of the 1,2-disubstituted benzimidazole, albeit in low (18%) yield, from the reaction of 3,4-dimethyl-o-phenylenediamine (1 mmol) with 4-nitrobenzaldehyde (2 mmol) at rt supported this hypothesis.

The specific role of TFE/HFIP through hydrogen-bonddriven electrophilic activation in promoting the tandem bisimine formation−rearrangement process for selective formation of the 1,2-disubstituted benzimidazoles is depicted in Scheme 5.

■ CONC[LU](#page-6-0)SIONS

Hydrogen-bond-driven electrophilic activation for selectivity control is demonstrated for competitive formation of 1,2 disubstituted and 2-substituted benzimidazole during reaction of o-phenylenediamine with aldehydes at rt under metal/Lewis acid-free conditions. The fluorous alcohols trifluoroethanol and hexafluoro-2-propanol promote the condensation of o-phenylenediamine with 2 mol equiv of aldehydes to selectively form the 1,2-disubstituted benzimidazoles. The broad substrate scope with demonstrated chemoselectivity, metal/catalyst-free protocol, excellent yields, and room temperature reaction condition mark a few advantages. The mechanistic investigation through various spectroscopic and chemical (by first-time identification/isolation of the crucial intermediates) studies rationalize the origin of selectivity control and derives the influence of various factors (e.g., nature of the promoter, steric and electronic factors of the reactants) on the observed selectivity. The specific role of the fluorous alcohols in promoting the reaction has been envisaged through hydrogen-bond-driven electrophilic activation of the aldehyde in the initial bisimine formation stage and the subsequent rearrangement of the in situ-formed bisimine through a 1,3-hydride shift. The better HBD values of TFE and HFIP compared to other solvents justifies their superiority over other solvents in promoting the reaction and controlling the selectivity.

EXPERIMENTAL SECTION

General. The glassware to be used in reactions was thoroughly washed and dried in an oven, and the experiments were carried out with required precautions. Chemicals and all solvents were commercially available and used without further purification. The ¹H and 13C NMR spectra were recorded on a 400 MHz NMR spectrometer in CDCl₃ with residual undeuterated solvent (CHCl₃: 7.26/77.0) using TMS as an internal standard. Chemical shifts (δ) are given in ppm, and *J* values are given in hertz. The 13 C NMR spectra were fully decoupled and were referenced to the middle peak of the solvent CDCl₃ at 77.00 ppm. Splitting patterns were designated as follows: s, singlet; bs, broad singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet. Mass spectra were recorded under APCI mode of ionization. Infrared (IR) spectra were recorded in the range 4000− 600 cm[−]¹ either as neat for liquid or KBr pellets for solid samples. Purity of the compounds were checked on the silica gel GF-254 under UV at 254 nm. Melting points were measured using melting point

Table 3. Selectivity in the Formation of 3a and 4a during the Reaction of 1a with 2a in the Presence of Various Reported $Catalysts^a$

					yield $(\%)^{d,e}$		
entry	catalyst(mol %) b	equiv $(1a:2a)^c$	time (h)	3a	4a	$3a^f$	lit. ref
$\mathbf{1}$	none	1:1	5	12	16	—	
$\sqrt{2}$	none	1:2	5	25	20	$\overline{}$	
3	montmorilonite K-10 $(10)^g$	1:1	10 min	21	32	$\overline{}$	10 _b
$\overline{4}$	montmorilonite K-10 $(10)^{g}$	1:2	10 min	75	18	90	10 _b
5	$H_2SO_4-SiO_2$ (10)	1:1	1.5	22	29	$\overline{}$	$10c$
6	$H_2SO_4-SiO_2(10)$	1:2	1.5	58	$27\,$	75	10c
7	L -proline (10)	1:1	5	20	35	$\qquad \qquad -$	10e
8	L -proline (10)	1:2	5	68	26	95	10e
9	oxalic acid (10)	1:1	35 min	22	25	$\overline{}$	10 _d
10	oxalic acid (10)	1:2	35 min	65	22	97	10 _d
11	$Fe(CIO4)$ ₃ (10)	1:1	10 min	20	30	$\overline{}$	10 _g
12	Fe(CIO ₄) ₃ (10)	1:2	10 min	48	25	90/10	10 _g
13	glyoxalic acid (75)	1:1	20 min	15	35	$\qquad \qquad -$	10 _h
14	glyoxalic acid (75)	1:2	20 min	68	21	95	10 _h
15	$[Hmim][TFA]$ (10)	1:1	3	18	28	$\overline{}$	10i
16	$[Hmim][TFA]$ (10)	1:2	3	71	25	86	10i
17	$SiO_2/ZnCl_2(25)$	1:1	20 min	24	32	$\overline{}$	10l
18	$SiO_2/ZnCl_2(25)$	1:2	20 min	62	$28\,$	$72\,$	101
19	Amberlite-IR-20 $(0.1 g)$	1:1	1.45	23	26	$\qquad \qquad -$	10n
20	Amberlite-IR-20 $(0.1 g)$	1:2	1.45	60	31	95	10n
21	Me ₃ SiCl (50)	1:1	5	22	32	-	10 _o
22	$Me3SiCl$ (50)	1:2	5	68	15	87	10 _o
23	HOAc $(3 \text{ mmol})^h$	1:2	30 min	65	30	—	10p
24	HOAc $(10 \text{ mL})^h$	1:2	30 min	88	$10\,$	—	10 _p
23	SDS(10)	1:1	22 min	25	32	$\qquad \qquad -$	10q
24	SDS (10)	1:2	22 min	66	23	98	10q
25	$Mg(HSO4)2$ (30)	1:1	10 min	22	26	$\overline{}$	17
26	$Mg(HSO_4)_2$ (30)	1:2	10 min	60	$28\,$	90	$17\,$
27	$Mg(HSO4)2$ (30)	1:1	45	25	32	-	$17\,$
28	$Mg(HSO_4)_2$ (30)	1:2	45	64	26	92	17
29	[Hbim][BF ₄] $(75)^i$	1:1	5	20	28	$\qquad \qquad -$	17 _b
30	[Hbim][BF ₄] $(75)^i$	1:2	5	76	15	88	17 _b

 a 1a (2.5 mmol) was treated with 2a in the presence of the catalyst (except for entries 1 and 2) under reported conditions. b Molar equivale[nt of](#page-9-0) the catalyst used with respect to 1a. Molar equivalent of 2a used with respect to 1a. ^dThe isolated yield of 3a and 4a after column chromat[ogra](#page-9-0)phic purification obtained in performing the reaction under the present investigation. ^eThe products were characterized by NMR (¹H and ¹³C) and MS (APCI). Trial of 3a as reported in the cited literature except for entry 14. ⁸A 10% w/w of the catalyst was used. ^hThe reaction was performed using 1 mmol of 1a at rt. ⁱThe reaction was carried out at 60 $^{\circ}$ C under N₂.

apparatus and were uncorrected. Evaporation of solvents was performed at reduced pressure, using a rotary vacuum evaporator.

Typical Experimental Procedure for the Synthesis of 1- Benzyl-2-phenyl-1H-benzimidazole 3a. A mixture of 1a (0.10 g, 1 mmol), 2a (0.21 g, 2 mmol, 2 equiv), and TFE (0.30 g, 3 mmol, 217 μ L) was stirred magnetically at rt for 30 min (complete consumption of 1, TLC). The mixture was dissolved in EtOAc (3 mL), adsorbed on silica gel (0.5 g, 230−400 mesh), and concentrated under rotary vacuum evaporation. The resultant solid mass was charged onto a flash chromatography column and eluted with hexane−EtOAc (85:15) to afford 3a (0.27 g, 95%) (entry 1, Table 4). White solid; mp = 130− 132 °C; IR (KBr) $\nu_{\text{max}} = 3012, 2952, 1601, 1508, 1465, 1264, 1172,$ 1101, 1065 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ : 7.87 (d, J = 8 Hz, 1H), 7.70−7.68 (m, 2H), 7.47−7.44 [\(m](#page-5-0), 3H), 7.33−7.29 (m, 4H), 7.24−7.21 (m, 2H), 7.12−7.09 (m, 2H), 5.46 (s, 2H). 13C NMR (CDCl3, 75 MHz, TMS) δ: 154.2, 143.2, 136.4, 136.1, 130.1, 129.9, 129.3, 129.1, 128.7, 127.8, 126.0, 123.0, 122.7, 120.0, 110.5, 48.4. MS (APCI) m/z : 285.1 (M + H)^{+ 10e} Unless otherwise mentioned, all . reactions for generalization study under Table 4 were performed using 1 mmol of 1a and 2 mmol of t[he r](#page-8-0)espective aldehyde.

Effect of Steric Hindrance on Selectivity of Formation of 1,2- Disubstituted and 2-Substituted Benzim[id](#page-5-0)azoles: Reaction of Pivalaldehyde with 1a in the Presence of Trifluoroethanol. 2tert-Butyl-1H-benzimidazole (Entry 28, Table 4). A mixture of 1a (108 mg, 1 mmol), pivalaldehyde (172 mg, 2 mmol, 2 equiv), and TFE (300 mg, 3 mmol, 217 μ L) was stirred magnetically at rt for 60 min (complete consumption of 1, TLC). The mixtur[e](#page-5-0) was dissolved in EtOAc (3 mL), adsorbed on silica gel (0.5 g, 230−400 mesh), and concentrated under rotary vacuum evaporation. The resultant solid mass was charged onto a flash chromatography column and eluted with hexane−EtOAc (80:20) to afford 2-tert-butyl-1H-benzimidazole (0.16 g, 92%). White solid; mp = 320−322 °C; IR (KBr) ν _{max} = 3345, 2885, 1612, 1442, 1370, 1352, 1390, 1285, 1081 cm⁻¹; ¹ H NMR (DMSO, 400 MHz, TMS) δ: 7.53−7.52 (m, 1H), 7.41−7.39 (m, 1H), 7.14−7.07 (m, 2H), 1.39 (s, 9H). MS (APCI) m/z : 175.2 (M + H)⁺¹⁸ .

Investigation on the Progress of the Reaction for an Insight on the Mechanistic Course of the Reaction. Evidence for a 1,3- Hydride Shift through a Bisimine Intermediate. TFE-Promot[ed](#page-9-0) Reaction of 1a with Benzaldehyde- α - d_1 . A mixture of 1a (0.54 g, 0.5 mmol), benzaldehyde- α - d_1 (0.10 g, 1 mmol, 2 equiv), and TFE (0.15 g, 109 μ L, 1.5 mmol) was stirred magnetically at rt for 30 min (complete consumption of 1, TLC). The mixture was dissolved in EtOAc (3 mL), adsorbed on silica gel (0.5 g, 230−400 mesh), and concentrated under rotary vacuum evaporation. The resultant solid mass was charged onto a flash chromatography column and eluted with hexane–EtOAc (85:15) to afford 2-phenyl-1- α - d_2 -methylphenyl-

Table 4. TFE-Promoted Selective 1,2-Disubstituted Benzimidazole Formation during the Reaction of 1 with Various Aldehydes at rt under Metal/Catalyst-Free Conditions^a

Entry	Aldehyde	Time	Yield $(\%)$
	R^5		
1	$R1 = R2 = R3 = R4 = R5 = H$	30	94
2	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = CH_3$	20	95
3	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = OCH_3$	20	96
4	$R^2 = R^3 = R^4 = R^5 = H$: $R^1 = OCH_3$	30	$85^{c,d,e}$
5	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = N(CH_3)_2$	20	94
6	$R^1 = R^2 = R^4 = R^5 = H$: $R^3 = Cl$	30	92
7	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = Br$	30	93
8	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = OH$	30	93
9	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = CF_3$	30	90
10	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = CN$	30	92
11	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = NO_2$	30	75^{fg}
12	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = OCH_2Ph$	30	93
13	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = OCOPh$	30	92
14	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = OCOBu'$	30	90
15	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = OB$ oc	30	95
16	$R^1 = R^2 = R^4 = R^5 = H$; $R^3 = O$ TBDMS	30	95
17	$R^1 = R^3 = R^5 = H$; $R^2 = R^4 = OCH_3$	30	91
18	$R^1 = R^4 = R^5 = H$; $R^2 = R^3 = OCH$;	30	92
19	$R^1 = R^4 = R^5 = H$; $R^2 = OEt$; $R^3 = OH$	45	90
20		30	93
21		20	91
22		20	92
23		30	89
24		30	92
25		60	90
26		45	91
27		45	89
28		60	92 ^h

 a **1a** (0.107 g, 1 mmol) was treated with the aldehyde (0.21 g, 2 mmol, 2 equiv) in the presence of TFE (3 mmol) at rt. b^b Isolated yield of the 1,2-disubstituted benzimidazole after purification. "Reaction was performed at 80 $^{\circ}$ C. d 1,2-disubstituted and 2-substituted benzimidazoles were formed in 20% and 75% yields, respectively, at rt after 20 min. ^e1,2-disubstituted and 2-substituted benzimidazoles were formed in 10% and 85% yields, respectively, at rt after 20 min in the presence of HFIP (3 mmol). Reaction was performed at 80 °C and the 2substituted benzimidazole was isolated in 20% yield in addition to the 1,2-disubstituted benzimidazole. ^g2-aryl benzimidazole was formed in 93% yield at rt. ^h Yield of 2-substituted benzimidazole.

Scheme 3. Mechanism for Formation of 1,2-Disubstituted Benzimidazole

1H-benzimidazole (5) (0.13 g, 91%); ¹H NMR (400 MHz, 25 °C, CDCl₃): δ = 7.90–7.87 (m, 1H), 7.92–7.69 (m, 2 H), 7.49 – 7.45 (m, 3 H), 7.37−7.31 (m, 4 H), 7.26−7.21 (m, 2 H), 7.14 − 7.11 (m, 2 H); MS (APCI) m/z : 287.2 (M + H)⁺.^{10o} .

Evidence for the Intermediacy of Bisimine during the TFE-Promoted 1,2-Disubstituted B[enz](#page-9-0)imidazole Formation. Formation of N^1 , N^2 -Dibenzylbenzene-1,2-diamine during the in Situ Reduction (with N aBH₄) of the Presumably Formed Bisimine during the Synthesis of the 1,2-Disubstituted Benzimidazole from 1a with 2a. A mixture of 1a (0.10 g, 1 mmol), 2a (0.21 g, 2 mmol, 2 equiv), and TFE (0.30 g, 3 mmol, 217 μ L) was stirred magnetically at rt. After 5 min, NaBH₄ (3 mmol, 3 equiv) was added and the resultant mixture was stirred for further 30 min. The mixture was dissolved in EtOAc (3 mL), adsorbed on silica gel (0.5 g, 230−400 mesh), and concentrated under rotary vacuum evaporation. The resultant solid mass was charged onto a flash chromatography column and eluted with hexane−EtOAc (85:15) to afford $N^1 \sim N^2$ -dibenzylbenzene-1,2-diamine (6) (0.3 g, 10%). Low melting solid; IR (KBr) $\nu_{\text{max}} = 3441, 2979, 1610, 1455, 1326, 1265,$ 1165 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ: 7.39–7.35 (m, 4H), 7.34−7.32 (m, 4H), 7.29−7.27 (m, 2H), 6.80−6.78 (m, 2H), 6.72−6.70 (m, 2H), 4.31 (s, 4H), 3.64 (brs, 2H); MS (EI) m/z: 289.2 $(M + H)^{+,19}$.

Evidence for the Intermediacy of Monoimine during the Reaction of 1a with Sterically Hindered Aldehyde Leading to the Form[ati](#page-9-0)on of the 2-Substituted Benzimidazole. Formation of N¹ -(2-Methoxybenzyl)benzene-1,2-diamine during the in Situ Reduction (with NaBH₄) of the Presumably Formed Monoimine during the Reaction of 1a with 2-Methoxybenzaldehyde That Led to the Formation of the 2-Substituted Benzimidazole. A mixture of 1a (0.10 g, 1 mmol), 2 methoxybenzaldehyde (0.27 g, 1 mmol, 1 equiv), and TFE (0.30 g, 3 mmol, 217 μ L) was stirred magnetically at rt. After 5 min, NaBH₄ (3) mmol, 3 equiv) was added and the resultant mixture was stirred for a further 30 min. The mixture was dissolved in EtOAc (3 mL), adsorbed on silica gel (0.5 g, 230−400 mesh), and concentrated under rotary vacuum evaporation. The resultant solid mass was charged onto a flash chromatography column and eluted with hexane−EtOAc (80:20) to afford N^1 - $(2$ -methoxybenzyl)benzene-1,2-diamine (7) $(0.35$ g, $15%)$. Light orange color oil; IR (KBr) $\nu_{\text{max}} = 3449, 2989, 2858, 1609, 1455,$ 1259, 1139, 1074 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ: 7.29− 7.25 (m, 2H), 7.02−6.89 (m, 2H), 6.86−6.79 (m, 1H), 6.78−6.67 (m, 3H), 4.31 (s, 2H), 3.86 (s, 3H), 3.58 (brs, 2H); 13C NMR (CDCl3, 100 MHz, TMS) δ: 157.5, 137.8, 134.7, 129.2, 128.4, 127.4, 120.6, 120.6, 118.9, 116.3, 112.6, 110.3, 55.4, 43.9. MS (EI) m/z: 228.3 (M + H)⁺. Anal. Calcd For C₁₄H₁₆N₂O: C, 73.66; H, 7.06; N, 12.27; O, 7.01%. Found: C, 73.69; H, 7.08; N, 12.29%.

1-(4-Methylbenzyl)-2-(4-methylphenyl)-1H-benzimidazole (Table 4, Entry 2). White solid (0.29 g, 95%); mp = 129−130 °C; IR (KBr) ν _{max} = 2959, 1618, 1605, 1402, 1252, 1128, 1098 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ : 7.85 (d, J = 8 Hz, 1H), 7.59 (d, J = 7.7 Hz, 2H), 7.31−7.18 (m, 5H), 7.13 (d, J = 7.7 Hz, 2H), 7.99 (d, J = 7.7 Hz, 2H), 5.40 (s, 2H), 2.40 (s, 3H), 2.33 (s, 3H). MS (APCI) m/z: 313.4 $(M + H)^{+.10e}$.

Figure 1. Evidence of a 1,3-hydride shift through the bisimine during TFE-promoted 1,2-disubstituted benzimidazole formation: (a) ¹ H NMR spectrum of an authentic sample of 3 obtained from the reaction of 1a (1 mmol) with 2a (2 mmol) in TFE (3 mmol) at rt; (b) $^1\text{H NMR spectrum}$ of the product obtained from the reaction of 1a (1 mmol) with PhCDO (2 mmol) in TFE (3 mmol) at rt.

Figure 2. Time-dependent NMR study (δ 8.2−10.2) for reaction of 1a (1 mmol) with 2a (2 mmol) in TFE (3 mmol) and MeOH (1 mL) : (a) 2a; (b) reaction mixture in TFE after 5 min; (c) reaction mixture in TFE after 30 min; (d) reaction mixture in MeOH after 5 min; (e) reaction mixture in MeOH after 30 min.

1-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-1H-benzimida**zole (Table 4, Entry 3).** White solid $(0.33 \text{ g}, 96\%); \text{mp} = 130 - 131$ °C; IR (KBr) ν_{max} = 3005, 2895, 1601, 4586, 1238, 1211, 1177, 1050 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ : 7.68 (d, J = 8.6 Hz, 3H), 7.44 (d, J = 8[.5](#page-5-0) Hz, 1H), 7.25−7.19 (m, 2H), 7.09 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 5.49 (s, 2H), 3.83
(c, 3H), 3.68 (c, 3H), MS (ADCI) m/z, 345 1 (M + H)^{+ 10e} (s, 3H), 3.68 (s, 3H); MS (APCI) m/z : 345.1 (M + H)⁺ .

1-(2-Methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole (Table 4, Entry 4, Footnote c). Off-white solid $(0.29 \text{ g}, 85\%)$ $(0.29 \text{ g}, 85\%)$ $(0.29 \text{ g}, 85\%)$; mp = 150−152 °C; IR (KBr) ν _{max} = 3015, 2985, 1612, 1476, 1432, 1395, 1285, 1172, 1098; ¹ H NMR (DMSO, 400 MHz, TMS) δ: 7.86 $(d, J = 7.76 \text{ Hz}, 1H), 7.69 \ (d, J = 7.96 \text{ Hz}, 2H), 7.31 \ (t, J = 6.96 \text{ Hz},$ $(d, J = 7.76 \text{ Hz}, 1H), 7.69 \ (d, J = 7.96 \text{ Hz}, 2H), 7.31 \ (t, J = 6.96 \text{ Hz},$ $(d, J = 7.76 \text{ Hz}, 1H), 7.69 \ (d, J = 7.96 \text{ Hz}, 2H), 7.31 \ (t, J = 6.96 \text{ Hz},$ 1H), 7.26−7.22 (m, 1H), 7.20−7.19 (m, 3H), 7.11 (d, J = 8.04 Hz, 2H), 7.06 (d, J = 7.88 Hz, 2H), 5.44 (s, 2H), 2.32 (s, 3H), 2.29 (s, 3H); MS (EI) m/z : 345.4 (M + H)⁺. ¹⁰ⁿ

2-(2-Methoxyphenyl)-1H-benzimidazole (Table 4, Entry 4, Footnotes d and e). Off-white solid [\(0.1](#page-9-0)68 g, 75% and 0.19 g, 85%, for footnotes d and e, respectively); mp = 176−177 °C; IR (KBr) ν _{max} $=$ 3435, 3028[, 1](#page-5-0)601, 1582, 1485, 1432, 1394, 1280, 1182, 1165, 1095; ¹H NMR (DMSO, 400 MHz, TMS) δ: 10.63 (brs, 1H), 8.60 (dd, J = 1.74 and 7.79 Hz, 1H), 7.82 (d, J = 6.65 Hz, 1H), 7.51 (d, J = 6.50 Hz, Scheme 5. Hydrogen-Bond-Driven Electrophilic Activation by Fluorous Alcohols for Selective Formation of 1,2- Disubstituted Benzimidazoles

1H), 7.46−7.42 (m, 1H), 7.29−7.28 (m, 2H), 7.18−7.14 (m, 1H), 7.09 (d, J = 11.25 Hz, 1H), 4.11 (s, 3H); MS (EI) m/z: 225.4 (M + $\mathrm{H})^{+}$. 20

4-[1-{4-(Dimethylamino)benzyl}-1H-benzimidazol-2-yl]-N,N- dim[eth](#page-9-0)ylaniline (Table 4, Entry 5). White solid (0.35 g, 95%); mp = 254−255 °C; IR (KBr) ν_{max} = 2953, 2895, 1612, 1462, 1422, 1238, 1126 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ: 7.82 (d, J = 7.3 Hz, 1H), 7.63 (d, J = 7.7 Hz, [1H](#page-5-0)), 7.26−7.19 (m, 3H), 7.02 (d, J = 7.4 Hz, 2H), 6.73 (d, J = 7.6 Hz, 2H), 6.68 (d, J = 7.5 Hz, 2H), 5.37 (s, 2H), 3.01 (s, 6H), 2.93 (s, 6H). MS (APCI) m/z : 371.4 (M + H)^{+ 10e} .

1-(4-Chlorobenzyl)-2-(4-chlorophenyl)-1H-benzimidazole **(Table 4, Entry 6).** White solid (0.32 g, 92%); mp = 136–137 °[C;](#page-8-0) IR (KBr) $\nu_{\text{max}} = 2995, 2856, 1605, 1483, 1354, 1221, 1250, 1162, \text{ cm}^{-1};$
¹H NMR (CDCL 400 MHz TMS) δ : 789–787 (m 1H) 760 (td 1 ¹H NM[R](#page-5-0) (CDCl₃, 400 MHz, TMS) *δ*: 7.89−7.87 (m, 1H), 7.60 (td, J

Scheme 4. Trapping of the Presumably Involved Monoimine/Bisimine Intermediate during the Formation of 2-Substituted and 1,2-Disubstituted Benzimidazoles, Respectively, through Conversion to the Corresponding Reductive Amination Products by Treatment with NaBH4

= 8.6 and 2 Hz, 2H), 7.45 (td, J = 8.6 and 2.4 Hz, 2 H), 7.37−7.26 (m, 5H), 7.21 (d, J = 7.9 Hz, 1H), 7.05−7.02(m, 2H), 5.41 (s, 2H); MS $(APCI)$ m/z: 354.2 $(M + H)^{+10e}$.

1-(4-Bromobenzyl)-2-(4-bromophenyl)-1H-benzimidazole **(Table 4, Entry 7).** White soli[d \(0](#page-8-0).40 g, 93%); mp = 139–141 °C; IR (KBr) $\nu_{\text{max}} = 3021, 2899, 1610, 1595, 1350, 1245, 1052 \text{ cm}^{-1};$ ¹H NMR (CDCl₃, 400 MHz, TMS) δ : 7.87 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 7.8 [Hz](#page-5-0), 2H), 7.52 (d, J = 7.2 Hz, 2H), 7.47 (d, J = 7.5 Hz, 2H), 7.34−7.29 (m, 2H), 7.20 (d, J = 7.6 Hz, 1H), 6.96 (d, J = 7.5 Hz, 2H), 5.38 (s, 2H). MS (APCI) m/z : 440.2 (M + H)^{+10o} .

4-[1-(4-Hydroxybenzyl)-1H-benzimidazol-2-yl]phenol (Table 4, Entry 8). Off-white solid (0.29 g, 93%); mp [=](#page-9-0) 183−185 °C; IR (KBr) $\nu_{\text{max}} = 3450, 3022, 2895, 1618, 1355, 1242 \text{ cm}^{-1};$ ¹H NMR (DMSO, 400 MHz, TMS) δ : 7.64 (d, J = 6.72 Hz, 1H), 7.55 (d, J = [7.](#page-5-0)92 Hz, 2H), 7.40 (d, $J = 6.72$ Hz, 1H), 7.18 (s, 2H), 6.89 (d, $J = 7.96$ Hz, 2H), 6.81 (d, J = 7.76 Hz, 2H), 6.64 (d, J = 7.76 Hz, 2H), 5.40 (s, 2H). MS (EI) m/z : 318.2 (M + H)⁺.¹⁰ⁿ .

1-[4-(Trifluoromethyl)benzyl]-2-[4-(trifluoromethyl)phenyl] 1H-benzimidazole (Table 4, Entr[y 9\)](#page-9-0). White solid $(0.38 \text{ g}, 90\%);$ mp = 146−147 °C; IR (KBr) ν_{max} = 3019, 2956, 1605, 1586, 1256, 1109, 1056 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ: 7.91 (d, J = 7.9 Hz, 1H), 7.78 (d, J = 8.3 [H](#page-5-0)z, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.62 $(d, J = 8.2 \text{ Hz}, 2H)$, 7.38 $(dt, J = 8.1 \text{ and } 1.1 \text{ Hz}, 1H)$, 7.30 $(dt, J = 8.1 \text{ Hz})$ and 1.1 Hz, 1H), 7.23−7.20 (m, 3H), 5.52 (s, 2H). MS (APCI) m/z: 421.2 $(M + H)^{+.21}$.

4-[1-(4-Cyanobenzyl)-1H-benzimidazol-2-yl]benzonitrile **(Table 4, Entry [10](#page-9-0)).** White solid (0.31 g, 92%); mp = 136–137 °C; IR (KBr) $ν_{max}$ =3031, 2965, 2866, 2229, 2221, 1610, 1485, 1365, 1254, 1165 cm[−]¹ ; 1 H NMR (DMSO, 400 MHz, TMS) δ: 7.64 (d, J = 6.72 Hz, 1H[\),](#page-5-0) 7.55 (d, J = 7.92 Hz, 2H), 7.40 (d, J = 6.72 Hz, 1H), 7.18 (s, 2H), 6.89 (d, J = 7.96 Hz, 2H), 6.81 (d, J = 7.76 Hz, 2H), 6.64 (d, J = 7.76 Hz, 2H), 5.40 (s, 2H). MS (EI) m/z : 318.2 (M + H)^{+ 10f} .

1-(4-Nitrobenzyl)-2-(4-nitrophenyl)-1H-benzimidazole (Table 4, Entry 11, Footnote f). Yellow solid $(0.18 \text{ g}, 75\%); \text{mp} =$ $(0.18 \text{ g}, 75\%); \text{mp} =$ $(0.18 \text{ g}, 75\%); \text{mp} =$ 302−304 °C; IR (KBr) ν max = 2985, 2853, 1610, 1526, 1450, 1375, 1230, 1141, 1052 cm⁻¹; ¹H NMR (DMSO, 400 MHz, TMS) δ: 8.42− 8.32 ([m,](#page-5-0) 4H), 8.26 (d, J = 8.48 Hz, 2H), 8.13 (d, J = 7.92 Hz, 1H), 7.36−7.23 (m, 2H), 7.02 (t, J = 7.56 Hz, 1H), 6.75 (d, J = 7.88 Hz, 1H), 6.57 (t, J = 7.48 Hz, 1H), 5.41 (s, 2H); MS (APCI) m/z : 375.2 $(M + H)^{+, 10n}$.

2-(4-Nitrophenyl)-1H-benzoimidazole (Table 4, Entry 11, **Footnote [g\).](#page-9-0)** Yellow solid; mp = 328–329 °C; IR (KBr) ν_{max} = 2985, 2853, 1610, 1526, 1450, 1375, 1230, 1141, 1052 cm⁻¹; ¹ H NMR (DMSO, 400 MHz, TMS) δ : 8.53 (brs, 1[H\)](#page-5-0), 8.30 (s, 2H), 8.03 (d, J = 3.2 Hz, 2H), 7.33–7.22 (m, 4H). MS (APCI) m/z : 240.4 (M + H)^{+10f} .

1-[4-(Benzyloxy)benzyl)-2-(4-(benzyloxy)phenyl]-1H-benzi**midazole (Table 4, Entry 12).** White solid $(0.46 \text{ g}, 93\%)$; mp [=](#page-8-0) 127−128 °C; IR (KBr) ν max = 3034, 2985, 2859, 1612, 1515, 1450, 1325, 1256, 1176, 1028 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ : 7.83 (d, J = 8.0 H[z,](#page-5-0) 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.44−7.27 (m, 11H), 7.22−7.20 (m, 2H), 7.05−7.01 (m, 4H), 6.92 (d, J = 8.3 Hz, 2H), 5.38 (s, 2H), 5.11 (s, 2H), 5.03 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ: 160.1, 158.3, 154.1, 143.1, 136.7, 136.5, 136.1, 130.7, 128.74, 128.67, 128.6, 128.1, 128.0, 127.5, 127.2, 122.8, 122.7, 122.5, 119.7, 115.3, 115.1, 110.4, 70.1, 47.9. MS (APCI) m/z: 497.5 (M + H)⁺; Anal. Calcd For $C_{34}H_{28}N_2O_2$: C, 82.23; H, 5.68; N, 5.64%. Found: C, 82.25; H, 5.67; N, 5.66%.

4-[1-(4-(Benzoyloxy)benzyl)-1H-benzimidazol-2-yl]phenyl **Benzoate (Table 4, Entry 13).** White solid $(0.48 \text{ g}, 92\%)$; mp = 164−166 °C; IR (KBr) ν max = 3025, 2980, 2848, 1603, 1509, 1338, 1245, 1196, 1068 cm⁻¹; ¹H NMR (DMSO, 400 MHz, TMS) δ: 8.23− 8.18 [\(](#page-5-0)m, 5H), 8.10 (d, $J = 8.64$ Hz, 1H), 7.88 (d, $J = 7.84$ Hz, 1H), 7.79−7.76 (m, 2H), 7.70−7.62 (m, 3H), 7.54−7.49 (m, 4H), 7.37− 7.31 (m, 3H), 7.28−7.23 (m, 3H), 5.51 (s, 2H); MS (EI) m/z: 525.3 $[M + H⁺]$. ¹³C NMR (CDCl₃, 100 MHz, TMS) δ : 165.1, 164.9, 153.4, 152.3, 150.5, 143.0, 136.0, 133.8, 133.7, 130.5, 130.3, 130.2, 129.3, 129.2, 128.7, 128.6, 127.9, 127.6, 127.1, 123.4, 123.0, 122.5, 122.3, 120.0, 110.6, 48.0; MS (EI) m/z : 517.5 (M + H)⁺. Anal. Calcd For $C_{34}H_{24}N_2O_4$: C, 77.85; H, 4.61; N, 5.34; O, 12.20%. Found: 77.86; H, 4.63; N, 5.35%.

4-[1-(4-Acetoxybenzyl)-1H-benzimidazol-2-yl]phenyl Acetate (Table 4, Entry 14). White solid (0.43 g, 90%); mp = 154− 155 °C; IR (KBr) $ν$ _{max} = 3028, 2990, 2862, 1756, 1748, 1608, 1520, 1320, 1250, 1168, 1060 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ: 7.86 (d, J = [7.9](#page-5-0)6 Hz, 1H), 7.71−7.67 (m, 2H), 7.34−7.30 (m, 1H), 7.27−7.23 (m, 1H), 7.21−7.18 (m, 3H), 7.12−7.10 (m, 2H), 7.07− 7.05 (m, 2H), 5.44 (s, 2H), 2.32 (s, 3H), 2.29 (s, 3H). 13C NMR (CDCl3, 100 MHz, TMS) δ: 169.4, 169.1, 153.2, 151.9, 150.2, 143.1, 136.0, 133.7, 130.4, 127.5, 126.9, 123.3, 122.9, 122.3, 122.1, 120.0, 110.5, 47.9, 21.2, 21.1. MS (EI) m/z : 402.3 (M + H)⁺. Anal. Calcd For C24H20N2O 4: C, 71.99; H, 5.03; N, 7.00; O, 15.98%. Found: C, 72.00; H, 5.05; N, 7.03%.

1-[4-(tert-Butoxycarbonyloxy)benzyl]-2-[4-(tert-butoxycarbonyloxy)phenyl]-1H-benzimidazole (Table 4, Entry 15). White solid (0.49 g, 95%); mp = 135−136 °C; IR (KBr) ν _{max} = 3030, 2986, 2868, 1760, 1754, 1610, 1516, 1254, 1166, 1054 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ : 7.89 (d, J = 8 Hz, 1H), 7.[69](#page-5-0) (d, J = 8 Hz, 2H), 7.32−7.25 (m, 4H), 7.20−7.15 (m, 3H), 7.10 (d, J = 8.2 Hz, 2H), 5.43 (s, 2H), 1.56 (s, 9H), 1.55 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ: 153.2, 152.5, 151.7, 151.3, 135.8, 133.5, 131.5, 130.4, 127.1, 126.9, 123.4, 123.0, 122.0, 121.7, 120.9, 119.9, 110.5, 84.0, 83.8, 47.9, 27.7. MS (EI) m/z: 516.3 (M + H)⁺ . Anal. Calcd For $C_{30}H_{32}N_2O_6$: C, 69.75; H, 6.24; N, 5.42; O, 18.58%. Found: C, 69.78; H, 6.26; N, 5.43%.

1-[4-(tert-Butyldimethylsilyloxy)benzyl]-2-[4-(tertbutyldimethylsilyloxy)phenyl]-1H-benzimidazole (Table 4, **Entry 16).** Colorless liquid (0.51 g, 95%); IR (KBr) $\nu_{\text{max}} = 3035$, 2986, 2862, 1615, 1450, 1338, 1268, 1186 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ : 7.83 (d, J = 7.9 Hz, 1[H\)](#page-5-0), 7.55 (d, J = 8.2 Hz, 2H), 7.30−7.21 (m, 3H), 6.96 (d, J = 7.9 Hz, 2H), 6.90 (d, J = 8.1 Hz, 2H), 6.78 (d, J = 7.9 Hz, 2H), 5.37 (s, 2H), 0.99 (s, 9H), 0.96 (s, 9H), 0.22 (s, 6H), 0.18 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ : 157.3, 155.2, 154.2, 143.1, 136.1, 130.7, 129.1, 127.3, 123.1, 122.7, 122.5, 120.5, 120.4, 119.7, 110.4, 48.0, 25.6, 18.25, 18.2, −4.39, −4.43. MS (EI) m/z : 545.2 (M + H)⁺. Anal. Calcd For $C_{32}H_{44}N_2O_2Si_2$: C, 70.54; H, 8.14; N, 5.14; O, 5.87; Si, 10.31%. Found: C, 70.58; H, 8.17; N, 5.17%.

1-(3,5-Dimethoxybenzyl)-2-(3,5-dimethoxyphenyl)-1H-benzimidazole (Table 4, Entry 17). Semisolid (0.92 g, 91%); IR (KBr) ν_{max} = 3042, 2985, 2796, 1745, 1704, 1642, 1498, 1255, 1096 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ: 7.87 (d, J = 7.7 Hz, 1H), 7.27− 7.39 (m, 3H), 6.85 [\(d,](#page-5-0) J = 2.2 Hz, 2H), 6.38−6.56 (m, 2H), 6.28 (d, J $= 1.6$ Hz, 2H), 5.40 (s, 2H), 3.78 (s, 6H), 3.69 (s, 3H); ¹³C NMR (CDCl3, 100 MHz, TMS) δ: 161.4, 160.9, 154.0, 142.7, 139.0, 136.2, 131.4, 125.3, 122.9, 119.8, 110.5. 107.0, 104.4, 104.1, 102.8, 99.2, 55.3, 48.4.; MS (APCI) m/z : 405.2 (M + H)⁺; HRMS (ESI) m/z calcd for $C_{24}H_{24}N_2O_4Na^+$ [M + Na⁺], 427.1628; Found 427.1625.

1-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)-1H-ben**zimidazole (Table 4, Entry 18).** White solid $(0.93 \text{ g}, 92\%)$; mp = 142−144 °C; IR (KBr) ν max = 3196, 2940, 2785, 1750, 1710, 1650, 1496, 1265, 1045 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ: 7.86 $(d, J = 8 \text{ Hz}, 1\text{ H}), 7.29-7.21 \text{ (m, 5H)}, 6.92-6.93 \text{ (m, 1H)}, 6.81 \text{ (d, } J =$ $(d, J = 8 \text{ Hz}, 1\text{ H}), 7.29-7.21 \text{ (m, 5H)}, 6.92-6.93 \text{ (m, 1H)}, 6.81 \text{ (d, } J =$ $(d, J = 8 \text{ Hz}, 1\text{ H}), 7.29-7.21 \text{ (m, 5H)}, 6.92-6.93 \text{ (m, 1H)}, 6.81 \text{ (d, } J =$ 4.9 Hz, 1H), 6.65 (d, J = 9.8 Hz, 2H), 5.40 (s, 2H), 3.97 (s, 3H), 3.86 (s, 3H), 3.77 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ : 154.1, 150.4, 149.5, 149.0, 148.5, 143.0, 136.3, 129.0, 126.0, 124.3, 222.9, 122.6, 122.5, 121.8, 119.7, 118.0, 112.3, 111.5, 110.9, 110.3, 108.9, 108.8, 55.9, 48.1. MS (APCI) m/z : 405.6 (M + H)⁺. HRMS (ESI) m/z calcd for $C_{24}H_{24}N_{2}O_{4}Na^{+}$ [M + Na⁺], 427.1628; Found 427.1629.

2-Ethoxy-3-((2-(3-ethoxy-4-hydroxyphenyl)-1H-benzo[d] imidazol-1-yl)methyl)phenol (Table 4, Entry 19). White solid (0.91 g, 90%); mp = 200-201 °C; IR (KBr) ν _{max} = 3162, 2948, 27866, 1748, 1721, 1623, 1472, 1258, 1006 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ: 9.56 (s, 1H, OH), 8[.9](#page-5-0)6 (s, 1H, OH), 7.65−7.67 (m, 1H), 7.46−7.49 (m, 1H), 7.17−7.23 (m, 4H), 6.92 (d, J = 8.0 Hz, 1H), 6.62−6.67 (m, 2H), 6.36−6.38 (m, 1H), 5.42 (s, 2H), 3.91−3.96 (m, 2H), 3.81−3.86 (m, 2H), 1.22−1.30 (m, 6H); 13C NMR (CDCl3, 100 MHz, TMS) δ: 154.0, 148.9, 147.2, 147.1, 146.6, 142.9, 136.4, 128.3, 122.7, 122.5, 122.3, 121.5, 119.3, 119.0, 116.1, 116.0, 114.5, 112.2, 111.3, 64.2, 47.7, 15.1. MS (APCI) m/z : 405.5 (M + H)⁺;

HRMS (ESI) m/z calcd for $C_{24}H_{24}N_{2}O_{4}Na^{+}$ [M + Na⁺], 427.1628; Found 427.1625,

2-(Pyridin-2-yl)-1-(pyridin-2-ylmethyl)-1H-benzimidazole **(Table 4, Entry 20).** White solid (0.26 g, 93%); mp = 129–130 °C; IR (KBr) $\nu_{\text{max}} = 3026, 2985, 2856, 1620, 1595, 1463, 1445, 1389,$ 1285, 1[04](#page-5-0)6 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ: 8.60−8.57 (m, 2H), 8.49−8.46 (m, 1H), 7.88−7.82 (m, 2 H), 7.49 (dt, J = 7.7 and 1.8 Hz, 1H), 7.38−7.36 (m, 1H), 7.33−7.24 (m, 3H), 7.16−7.13 $(m, 1H)$, 6.90 (d, J = 7.8 Hz, 1H), 6.30 (s, 2H); MS (APCI) m/z . 287.3 $(M + H)^{+.10e}$.

2-(Furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole **(Table 4, Entry 21).** White solid (0.25 g, 93%); mp = 94–95 °C ; IR (KBr) $\nu_{\text{max}} = 3091, 2895, 1605, 1514, 1450, 1375, 1106, 1056 \text{ cm}^{-1};$ ¹H N[MR](#page-5-0) (CDCl₃, 400 MHz, TMS) δ: 7.79–7.77 (m, 1H), 7.65 (s, 1H), 7.51−7.49 (m, 1H), 7.33−7.29 (m, 3H), 7.21 (d, J = 3.4 Hz, 1H), 7.61(t, J = 1.7 Hz, 1H), 6.28−6.23 (m, 2H), 5.64 (s, 2H); MS (APCI) m/z : 265.3 (M + H)⁺.^{10e} .

2-(Thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimida**zole (Table 4, Entry 22).** White solid $(0.27 \text{ g}, 92\%)$; mp = 146-147 °C; IR (KBr) ν_{max} = 3024, 2884, 1615, 1525, 1425, 1362, 1282, 1161, 1052 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ: 7.84−7.82 (m, 1H), 7.52 ([dd,](#page-5-0) J = 5.1 and 1.0 Hz, 1H), 7.47 (dd, J = 3.7 and 1 Hz, 1H), 7.38−7.36 (m, 1H), 7.33−7.28 (m, 2H), 7.24 (dd, J = 5.2 and 1.2 Hz, 1H), 7.15−7.13 (m, 1H), 6.95−6.93 (m, 1H), 6.87−6.86 (m, 1H), 5.71 (s, 2H); MS (APCI) m/z : 297.2 (M + H)⁺.^{10o} .

1-((1H-Indol-3-yl)methyl)-2-(1H-indol-3-yl)-1H-benzimidazole (Table 4, Entry 23). Brown solid (0.32 g, 8[9%\)](#page-9-0); mp = 254−256 °C; IR (KBr) ν_{max} = 3025, 2956, 1610, 1590, 1356, 1255, 1101, 1058 cm[−]¹ ; ¹ H N[M](#page-5-0)R (DMSO, 400 MHz, TMS) δ: 11.66 (s, 1H), 11.00 (s, 1H), 8.31 (d, $J = 7.8$ Hz, 1H), 7.86 (s, 1H), 7.67 (d, $J = 7.1$ Hz, 1H), 7.54 (d, J = 7.1 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.31 (d, J = 8.1 Hz, 1H), 7.26−7.13 (m, 5H), 7.03−7.01 (m, 2H), 6.83 (d, J = 7.4 Hz, 1H), 5.82 (s, 2H); MS (APCI) m/z : 363.2 (M + H)⁺.^{10f} .

2-(Naphthalen-2-yl)-1-(naphthalen-2-ylmethyl)-1H-benzimidazole (Table 4, Entry 24). White solid (0.35 g, 92%); mp = 124− 126 °C; IR (KBr) ν _{max} = 3055, 2899, 1602 1438, 1370, 1324, 1252, 1145 cm⁻¹; ¹H [N](#page-5-0)MR (CDCl₃, 400 MHz, TMS) δ: 8.20 (S, 1H), 7.94 (d, J = 8 Hz, 1H), 7.91−7.83 (m, 5H), 7.75−7.70 (m, 2H), 7.57 (s, 1H), 7.55−7.46 (m, 4H), 7.37−7.23 (m, 4H), 5.67 (s, 2H); MS $(APCI)$ m/z: 385.3 $(M + H)^{+.10g}$.

1-Cinnamyl-2-styryl-1H-benzimidazole (Table 4, Entry 25). Light red color oil (0.30 g, 90%); ¹H NMR (CDCl₃, 400 MHz, TMS) δ : 8.00 (d, J = 15.8 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), [7.5](#page-5-0)8 (d, J = 7.3 Hz, 2H), 7.39−7.20 (m, 11H), 7.09 (d, J = 15.8 Hz, 1H), 6.44−6.31 $(m, 2H)$, 5.03 (d, J = 4.7 Hz, 2H); MS (EI) m/z : 336.2 (M + H)⁺.²¹ .

2-Cyclohexyl-1-(cyclohexylmethyl)-1H-benzimidazole (Table 4, Entry 23). White solid (0.27 g, 91%); mp = 91−92 °C; [IR](#page-9-0) (KBr) $\nu_{\text{max}} = 3011, 2956, 1611, 1445, 1325, 1228, 1156 \text{ cm}^{-1}; \text{ }^1\text{H}$ NMR [\(C](#page-5-0)DCl₃, 400 MHz, TMS) δ: 7.76−7.71 (m, 1H), 7.31−7.27 (m, 1H), 7.23−7.18 (m, 2H), 3.91 (d, J = 7.4 Hz, 2H), 2.81−2.77 (m, 1H), 1.94−1.62 (m, 13H), 1.43−1.38 (m, 3H), 1.19−1.15 (m, 3H), 1.09−1.03 (m, 2H); MS (APCI) m/z: 297.4 (M + H)^{+10j} .

1-Butyl-2-propyl-1H-benzimidazole (Table 4, Entry 27). White solid (0.19 g, 89%); mp = 128-130 °C; IR ([KBr](#page-9-0)) ν _{max} = 3035, 2868, 1610, 1518, 1416, 1259, 1186, 1065 [cm](#page-5-0)⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS) δ : 7.75–7.71 (m, 1H), 7.33–7.29 (m, 1H), 7.26−7.22 (m, 2H), 4.10 (t, J = 7.48 Hz, 2H), 2.84 (t, J = 7.6 Hz, 2H), 1.99−1.90 (m, 2H), 1.83−1.75 (m, 2H), 1.46−1.36 (m, 2H), 1.08 (t, J $= 7.4$ Hz, 3H), 0.98 (t, J = 7.3 Hz, 3H). MS (EI) m/z : 217.2 (M + $\mathrm{H})^{+}$. 101

■ [AS](#page-9-0)SOCIATED CONTENT

S Supporting Information

Copies of spectra for all compounds.. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*Tel: 91-(0)-172 2214683; fax: 91-(0)-172 2214692; e-mail: akchakraborti@niper.ac.in; akchakraborti@rediffmail.com.

Notes

[The authors declare no co](mailto:akchakraborti@niper.ac.in)mpeting fi[nancial interest.](mailto:akchakraborti@rediffmail.com)

■ ACKNOWLEDGMENTS

Financial support for Senior Research Fellowship (R.C. and D.N.K.) and Research Associateship (D.K.) from CSIR, New Delhi, India.

■ REFERENCES

(1) (a) Angiotensin II receptor antagonist: Kohara, Y.; Kubo, K.; Imamiya, E.; Wada, T.; Inada, Y.; Naka, T. J. Med. Chem. 1996, 39, 5228. (b) Antiviral: Porcari, A. R.; Devivar, R. V.; Kucera, L. S.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1998, 41, 1252. (c) Neuropeptide Y Y1 receptor antagonist: Zarrinmayeh, H.; Nunes, A. M.; Ornstein, P. L.; Zimmerman, D. M.; Arnold, M. B.; Schober, D. A.; Gackenheimer, S. L.; Bruns, R. F.; Hipskind, P. A.; Britton, T. C.; Cantrell, B. E.; Gehlert, D. R. J. Med. Chem. 1998, 41, 2709. (d) Factor Xa inhibitor: Zhao, Z. S.; Arnaiz, D. O.; Griedel, B.; Sakata, S.; Dallas, J. L.; Whitlow, M.; Trinh, L.; Post, J.; Liang, A.; Morrissey, M. M.; Shaw, K. J. Bioorg. Med. Chem. Lett. 2000, 10, 963. (e) Antiallergic 5-lipoxygenase inhibitor: Nakano, H.; Inoue, T.; Kawasaki, N.; Miyakata, H.; Matsumoto, H.; Taguch, T.; Inagaki, N.; Nagai, H.; Satog, T. Bioorg. Med. Chem. 2000, 8, 373. (f) Antibacterial: Göker, H.; Kuş, C.; Boykin, D. W.; Yildiz, S.; Altanlar, N. Bioorg. Med. Chem. 2002, 10, 2589. (g) Antimicrobial: Ö zden, S.; Atabey, D.; Yildiz, S.; Göker, H. *Bioorg. Med. Chem.* **2005**, 13, 1587. (h) Anti-Hepatitis C: Hwu, J. R.; Singha, R.; Hong, S. C.; Chang, Y. H.; Das, A. R.; Vliegen, I.; De Clercq, E.; Neyts, J. Antiviral Res. 2008, 77, 157. (i) Burkitt's lymphoma inhibitors: Ramla, M. M.; Omar, M. A.; Tokuda, H.; El-Diwani, H. I. Bioorg. Med. Chem. 2007, 15, 6489. (j) Antiparasitic: Pérez-Villanueva, J.; Santos, R.; Hernández-Campos, A.; Giulianotti, M. A.; Castillo, R.; Medina-Franco, J. L. Med. Chem. Commun. 2011, 2, 44.

(2) (a) Mazurov, A. Bioorg. Med. Chem. Lett. 2000, 10, 67. (b) Tumelty, D.; Schwarz, M. K.; Needels, M. C. Tetrahedron Lett. 1998, 39, 7467 and the references therein..

(3) (a) Smith, J. M.; Krchňák, V. Tetrahedron Lett. 1999, 40, 7633. (b) Vourloumis, D.; Takahashi, M.; Simonsen, K. B.; Ayida, B. K.; Barluenga, S.; Winters, G. C.; Hermann, T. Tetrahedron Lett. 2003, 44, 2807.

(4) Ezquerra, J.; Lamas, C. Tetrahedron 1997, 53, 12755.

(5) Zheng, N.; Buchwald, S. L. Org. Lett. 2007, 9, 4749.

(6) (a) Zou, B.; Yuan, Q.; Ma, D. Angew. Chem., Int. Ed. 2007, 46, 2598. (b) Zheng, N.; Anderson, K. W.; Huang, X.; Nguyen, N. H.; Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 7509.

(7) (a) Brain, C. T.; Brunton, S. A. Tetrahedron Lett. 2002, 43, 1893. (b) Brain, C. T.; Steer, J. T. J. Org. Chem. 2003, 68, 6814. (c) Saha, P.; Ali, M. A.; Ghosh, P.; Punniyamurthy, T. Org. Biomol. Chem. 2010, 8, 5692.

(8) Zhu, J.; Xie, H.; Chen, Z.; Li, S.; Wu, Y. Synlett 2009, 3299.

(9) Shenvi, R. A.; O'Malley, D. P.; Baran, P. S. Acc. Chem. Res. 2009, 42, 530.

(10) A few selected examples: (a) Rao, A.; Chimirri, A.; Ferro, S.; Monforte, A. M.; Monforte, P.; Zappalà, M. ARKIVOC 2004, V, 147. (b) Perumal, S.; Mariappan, S.; Selvaraj, S. ARKIVOC 2004, VIII, 46. (c) Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Otokesh, S.; Baghbanzadeh, M. T. Tetrahedron Lett. 2006, 47, 2557. (d) Kokare, N. D.; Sangshetti, J. N.; Shinde, D. B. Synthesis 2007, 2829. (e) Varala, R.; Nasreen, A.; Enugala, R.; Adapa, S. R. T. Tetrahedron Lett. 2007, 48, 69. (f) Chakrabarty, M.; Mukherjee, R.; Karmakar, S.; Harigaya, Y. Monatsh. Chem. 2007, 138, 1279. (g) Oskooie, H. A.; Heravi, M. M.; Sadnia, A.; Behbahani, F. K.; Janati, F. Chin. Chem. Lett. 2007, 18, 1357. (h) Pawar, S. S.; Dekhane, D. V.; Shingare, M. S.; Thore, S. N.

The Journal of Organic Chemistry Article and the Second Secon

Chin. Chem. Lett. 2008, 19, 1055. (i) Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Nikcheh, M. S. Synth. Commun. 2008, 38, 4272. (j) Yadav, J. S.; Reddy, B. V. S.; Premalatha, K.; Shiva, S. K. Can. J. Chem. 2008, 86, 124. (k) Mohammadi, A. A.; Azizian, J.; Karimi, N. Heterocycles 2009, 78, 2337. (l) Jacob, R. G.; Dutra, L. G.; Radatz, C. S.; Mendes, S. R.; Perin, G.; Lenardao, E. J. Tetrahedron Lett. 2009, 50, 1495. (m) Jadhav, G. R.; Shaikh, M. U.; Kale, R. P.; Gill, C. H. Chin. Chem. Lett. 2009, 20, 535. (n) Das Sharma, S.; Konwar, D. Synth. Commun. 2009, 39, 980. (o) Wan, J.-P.; Gan, S.-F.; Wu, J.-M.; Pan, Y. Green Chem. 2009, 11, 1633. (p) Azarifar, D.; pirhayati, M.; Maleki, B.; Sanginabadi, M.; Yami, R. N. J. Serb. Chem. Soc. 2010, 75, 1181. (q) Bahrami, K.; Mohamma, M. K.; Nejati, A. Green Chem. 2010, 12, 1237. (r) Zhang, L.-J.; Xia, J.; Zhou, Y.-Q.; Wang, H.; Wang, S.-W. Synth. Commun. 2012, 42, 328. (s) Paul, S.; Basu, B. Tetrahedron Lett. 2012, 53, 4130.

(11) Hamilton, A. D. Synthetic Studies on Molecular Recognition. In Bioorganic Chemistry Frontiers; Dugas, H., Ed.; Springer-Verlag: Berlin, 1991; Vol. 2, pp 117−174.

(12) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001, 40, 2382.

(13) Representative recent example: Aakerö y, C. B.; Rajbanshi, A.; Desper, J. Chem. Commun. 2011, 47, 11411.

(14) A few representative examples of HB-mediated electrophilic activation for various organic reactions: (a) Khatik, G. L.; Kumar, R.; Chakraborti, A. K. Org. Lett. 2006, 8, 2433. (b) Chankeshwara, S. V.; Chakraborti, A. K. Org. Lett. 2006, 8, 3259. (c) Chakraborti, A. K.; Rudrawar, S.; Jadhav, K. B.; Kaur, G.; Chankeshwara, S. V. Green Chem. 2007, 9, 1335. (d) Chakraborti, A. K.; Raha Roy, S.; Kumar, D.; Chopra, P. Green Chem. 2008, 10, 1111. (e) Chakraborti, A. K.; Raha Roy, S. J. Am. Chem. Soc. 2009, 131, 6902. (f) Raha Roy, S.; Chakraborti, A. K. Org. Lett. 2010, 12, 3866. (g) Parikh, N.; Kumar, D.; Raha Roy, S.; Chakraborti, A. K. Chem. Commun. 2011, 47, 1797. (h) Sarkar, A.; Raha Roy, S.; Chakraborti, A. K. Chem. Commun. 2011, 47, 4538. (i) Raha Roy, S.; Jadhavar, P. S.; Seth, K.; Sharma, K. K.; Chakraborti, A. K. Synthesis 2011, 2261. (j) Sarkar, A.; Raha Roy, S.; Parikh, N.; Chakraborti, A. K. J. Org. Chem. 2011, 76, 7132. Selected examples of HB-mediated nucleophilic activation for organic transformation: (k) Chakraborti, A. K.; Sharma, L.; Nayak, M. K. J. Org. Chem. 2002, 67, 2541. (l) Nayak, M. K.; Chakraborti, A. K. Chem. Lett. 1998, 297.

(15) Kamlet, M. J.; Abboud, J. L. M.; Abraham, M. H.; Taft, R. W. J. Org. Chem. 1983, 48, 2877.

(16) The use of glycerol: Radatz, C. S.; Silva, R. B.; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Alves, D. Tetrahedron Lett. 2011, 52, 4132 affords 3a and 4a in 20% and 15% yields, respectively, at rt. The use of 3 mmol of glycerol did not produce detectable/isolable amounts 3a and 4a at rt but gave 3a and 4a in 70% and 30% yields, respectively, at 90 °C.

(17) Khodabakhsh, N.; Zolfigol, M. A.; Safikhani, N. Synth. Commun. 2008, 38, 2919. (b) Saha, D.; Saha, A.; Ranu, B. C. Green Chem. 2009, 11, 733.

(18) Charton, J.; Girault-Mizzi, S.; Debreu-Fontaine, M.-A.; Foufelle, F.; Hainault, I.; Bizot-Espiard, J.-G.; Caignard, D.-H.; Sergheraert, C. Bioorg. Med. Chem. 2006, 14, 4490.

(19) Itoh, T.; Nagata, K.; Miyazaki, M.; Ishikawa, H.; Kurihara, A.; Ohsawa, A. Tetrahedron 2004, 60, 6649.

(20) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932.

(21) Bandyopadhyay, P.; Sathe, M.; Ponmariappan, S.; Sharma, A.; Sharma, P.; Srivastava, A. K.; Kaushik, M. P. Bioorg. Med. Chem. Lett. 2011, 21, 7306.